Direct and Highly Enantioselective Synthesis of
Ferrocenes with Planar Chirality by
(—)-Sparteine-Mediated Lithiation

M. Tsukazakit M. Tinkl, A. Roglans, B. J. Chapell,
N. J. Taylor, and V. Snieckug*

We report the first direct and highly enantioselective synthesis

of ferrocenyl derivatives with planar chiralityia a (—)-

sparteine-mediated Directed ortho Metalation (DoM) process pyg (a:s)- /L
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(1 — 2, Scheme 1). Although reports for the effective

diastereoselective preparation of chiral 1,2-disubstituted fer-

rocenes using chiral Directed Metalation Group (DMG) auxil-
iaries have been rapidly accumulating (Schemé ajrect
methods to obtain enantiomerically pure ferrocerylsre-
stricted by requirement for substrate-specific resoldiéand
chiral auxiliary removat?=f have not been hitherto described.
Our work is a rational extension of DoM stratediemd is
stimulated by the results of Hopff&nd Beak? demonstrating
that (—)-sparteine is an effective ligand for high asymmetric
induction in lithiation-substitution reactions. In view of the
increasing importance of ferrocenes with planar chiréditg
asymmetric catalysi® enantioselective synthestsand diverse
material science are8gsignificant utility and broad application
of the present methodology may be anticipated.
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Table 1. n-BuLi/(—)-Sparteine-Induced Metalation of

N,N-Diisopropyl Ferrocenecarboxamid&)( Electrophiles, Yields,
and Enantioselectivities

Efa E product yield, % ee, %
TMSCI T™MS 2a 96 98
Mel Me 2b 91 94
Et,CO E&C(OH) 2c 45 99
PhCO PhC(OH) 2d 91 99
CICH,OCHs CH,OCH; 2e 62 81
[P | 2f 85 96
(PhS) PhS 2g 90 98
(PhSe) PhSe 2h 92 93
PhPCI PhP 2i 82 9C
B(OMe) B(OH), 2j 89 85

a2.2 equiv ofn-BuLi/(—)-sparteine was used with the exception of
E* = TMSCI, ELCO, and PkCO (1.2 equiv ofh-BuLi/(—)-sparteine).
b All yields refer to isolated and purified (chromatographed) materials.
¢ Compounds2g—i undergo slow racemization at room temperature
(ref 12). Therefore, ee determination was carried out immediately after
purification.

Deprotonation (1.2 equiv of-BuLi/(—)-sparteine/E0/—78
°C) of N,N-diisopropyl ferrocenecarboxamidé)(-¢ followed
byquenching with TMSCI, warming to room temperature, and
standard aqueous NBI workup afforded the silylated product
2ain 96% chemical yield and 98% ee (Table®1)Similarly,
sequential DoM and electrophile quench produced a variety of
substituted ferrocenezb—j in high yield and excellent enan-
tioselectivity. For compoundg&b,e—j, 2.2 equiv ofn-BuLi/
sparteine was required to achieve optimum chemical yield; in
these cases, the change of stoichiometry did not lead to erosion
of ee. Enantiomeric excess was established by comparison with
racemic products, prepared by deprotonation witBulLi/
TMEDA/Et,0/—78°C, using chiral HPLG? The () absolute
configuration of2c was established by single-crystal X-ray

(7) Prepared from ferrocenecarboxylic acid (Aldrich) by sequential
treatment with COGlcat. DMF/CHCIl, and HN{-Pr) in 74% yield after
recrystallization (hexane).

(8) For DoM chemistry of ferrocenes, see ref 1f.

(9) Metalation withs-BuLi/(—)-sparteine in EO andt-BuOMe produced
94% and 97% yields and 74% and 67% ee, respectively.

(10) CHIRALCEL OD, CHIRALCEL OK, and CHIRALCEL OJ chiral
columns were used. For details, see supporting information.
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crystallographic analysi®. In view of the configurational
stability of the sp-hybridized ferrocenyl carbanion, enantiose-
lective induction must occur at the deprotonation and not
electrophile substitution stép. On this basis, the corresponding
configurational outcome can be provisionally assigned to all
1,2-disubstituted ferrocen&a,b,d—j.

As depicted in Table 1, the electrophiles introduced provide
diverse carbon2b—e) and heteroaton2@,f—j)-based? chiral
ferrocenes, some of whic¢d,i) are related to popular ligands
for enantioselective catalysis.In fact, reduction (BH/THF)
of 2d (Scheme 3) furnishe®, whose use in asymmetric
synthesis is under study. Subsequent metalation & under
achiral conditions (1.2 equiv ai-BuLi/THF or s-BuLi/Et,0)

(11) Crystal data fOIQ%\ CoHosFeNQ, M, = 399.36, orthorhombic,
P212;2;, a = 7.4383(7) A,b = 9.8099(8) A,c = 28.763(2) A,V =
2098.8(3) B, Z = 4, D, = 1.264 g/cr, u(Mo Ko) = 7.33 cnt?, F(000)
= 856, T = 200 K. Data were collected on a Siemens P4 diffractometer
with Mo Ko radiation ¢ = 0.710 73 A); 6866 reflections were measured
giving 6130 independent reflections (unmerged Friedel opposites). The
structure was solved using Patterson and Fourier routines (SHELXTL IRIS)
and refined by full-matrix least squares Brresulting in finalR, Ry and
GOF (for 5006 data withF > 6.00(F)) of 0.0283, 0.0298, and 1.59,
respectively, for solution using ti&#model. The corresponding values for
solution of theR model were 0.0430, 0.0467, and 2.49.

(12) Compoundgg, 2h, and2i undergo complete racemization in hexane:
i-PrOH (98:2) at room temperatureg., 29 (ti2 &~ 24 h); 2h (t12 ~ 60 h).
This intriguing observation may be tentatively rationalized by substituted
Cp—aryl ligand exchange. For similar examples, see: Slocum, D. W.;
Tucker, S. P.; Engelmann, T. Retrahedron Lett197Q 621. Roman, E.;
Astruc, D.; des Abbayes, H. OrganometChem 1981, 219 211.
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and benzophenone quench resulted in exclusive formatidn of
(Scheme 3), a result suggesting that the amide DMG effect is
overridden by steric hindrance factors in the substituted Cp
ring.** In order to show the combined potential of DeMdross-
coupling reactions, a powerful strategy in aromatic and het-
eroaromatic chemistidp, the iodoferrocenyl amide2f was
subjected to the Suzuki procedure with (2,4-dimethoxyphenyl)-
boronic acid to afford in low yield but unchanged enantiomeric
excess together with the dehalogenation prod&cheme 3%

The present results demonstrate the first direct and highly
efficient enantioselective synthesis of ferrocenyl carboxamide
derivatives with planar chirality using sparteine-mediated DoM.
Enantiomerically pure ferrocenes are thus available from achiral
precursors without recourse to tedious methods of resolution
and chemical manipulation of chiral DMG auxiliaries. Fur-
thermore, aryl-substituted systems may be prepared by a
combined DoM-cross-coupling regimer2{ — 5). The ready
availability of diverse DMG-bearing ferrocengsthe rich
functional group chemistry of ferrocenes, and the flourishing
use of these ligands in asymmetric catalysis and synthesis
suggest considerable utility of these findings.
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